AGS2
Name: \qquad
AGS1 Review \#1
Period: \qquad Date: \qquad

Module 1

\{1\} Consider the following sequence:

n	1	2	3	4
$f(n)$	2	10	50	250

$\{a\}$ Is the sequence above arithmetic or geometric? How do you know?
\{b\} Create a recursive formula for the sequence.
\{c\} Create an explicit formula for the sequence.
\{2\} Consider the following sequence:

n	0	1	2	3
$f(n)$	24	16	8	0

\{a\} Is the sequence above arithmetic or geometric? How do you know?
\{b\} Create a recursive formula for the sequence.
\{c\} Create an explicit formula for the sequence.

Module 2

For exercises 3-6, decide whether the given function is discrete or continuous, explain your choice. Additionally, decide if the function is linear/arithmetic or exponential/geometric, explain your choice.
$\{3\} y=2 x+5$
$\{4\} y=2\left(\frac{1}{2}\right)^{x}$
\{5\}

\{6\}

\{7\} Fill in the table for a linear relation. Then, write an equation for the relation.

x	0	1	2	3	4	5
y		3				31

Module 3

$\{8\}$ Use the graph below to determine each of the following. Write a-e in interval notation, and $\mathrm{f}-\mathrm{i}$ in coordinate notation.
\{a\} Domain:
\{b\} Range:
\{c\} Intervals of increase:
\{d\} Intervals of decrease:
\{e\} Intervals of constant:
$\{\mathrm{f}\}$ - intercept(s): $\{\mathrm{g}\}$-intercept(s)
\{i\} Minimum:
\{h\} Maximum:
\{9\} Use the graph to the right to fill in the following.
$\{\mathrm{a}\} f(0)=$
$\{b\} g(-2)=$
\{c\} When $f(x)=-1, x=$
\{d\} At what value(s) of x does $f(x)=g(x)$?
$\{\mathrm{e}\}$ On what interval is $f(x)>g(x)$?

$\{10\}$ Use $f(x)=3 x+2$ and $g(x)=-x+4$ to fill in the following.
$\{\mathrm{a}\} f(-2)=$
$\{b\} g(4)=$
\{c\} When $f(x)=-4, x=$
\{d\} Evaluate $f(2)+g(2)$
$\{e\}$ Let $h(x)=f(x)+g(x)$. Write an equation for $h(x)$.

Module 4

For 11-16, solve each equation. Show your work.
$\{11\} \frac{2 x}{5}=6$
$\{12\}-16=-6-5 x$
$\{13\} 4(x-2)=20$
$\{14\} \frac{1}{3} x+3=9$
$\{15\} 4(x-1)+3=19$
$\{16\} 3 x-5=6 x+7$

For 17-28, solve each inequality and mark the solution on a number line.
$\{17\} 5 x-6<7 x+8$
$\{18\}-3 x-2 \geq 10$
$\{19\}$ Solve for $B: 2 B+3 C=D$
$\{20\}$ Solve for $x: y=m x+b$
$\{21\}$ Write an inequality for the graph below:

