AGS2 Review for Test - Module 1 Name: _____ Period: _____ Date: _____

For 1-3, For each relation complete the following

- a) State whether it is linear, exponential, quadratic or none of these
- b) Explain the pattern in words
- c) State the explicit formula
- d) State the recursive formula
- e) Graph the relation

n	f(n)
0	3
1	7
2	11
3	15
4	19
5	23

2.

n	f(n)
1	$\frac{1}{9}$
2	$\frac{1}{3}$
3	1
4	3
5	9

3.

n	f(n)
-3	8
-2	5
-1	4
0	5
1	8
2	13

- 4. a) Draw the 5th term.
 - b) Make a table showing the total number of squares in each picture.
 - c) State whether it is quadratic or not. Why?
 - d) State the explicit formula
 - e) State the recursive formula

f) How many cubes will be in the 40th figure?

Simplify the following expressions: 5. 3x(2x-1) + 2(2x-1)

6. 4x(x-5) - 4(x-5)

Multiply the following expressions using FOIL:
7.
$$(3x-4)(5x-2)$$
 8. $(x+3)(x-7)$

Multiply the following expressions using the BOX method:

9. (4x+3)(2x+1) 10. (x-3)(x+5)

For 9-10, find the Greatest Common Factor of the two given terms. 11. $24a^2b$ and $48ab^3$ 12. xy^4z^2 and $6xy^4z^3$

13. Given the relation: { (2, 4) (0, -2) (1, 5) (-2, 7) (1, -3) }

State the Domain:

State the Range:

Is it a function? Explain.

14. Given the graph:

State the Domain: State the Range: Is it a function? Explain.

15. a) How do you know if a function is linear from the table?

b) How do you know if a function is exponential from the table?

c) How do you know if a function is quadratic from the table?

- 16. a) How do you know if a function is linear from a graph?
 - b) How do you know if a function is exponential from a graph?
 - c) How do you know if a function is quadratic from a graph?
- 17. a) How do you know if a function is linear from a recursive equation?
 - b) How do you know if a function is exponential from a recursive equation?
 - c) How do you know if a function is quadratic from a recursive equation?
- 18. a) How do you know if a function is linear from an explicit equation?
 - b) How do you know if a function is exponential from an explicit equation?
 - c) How do you know if a function is quadratic from an explicit equation?

19. Make a table and graph each equation in a different color on the same set of axes. Label your graph and use appropriate scales. Then, answer the questions below. Mia, Nick and Peeta are in the middle of a race. "y" is the distance traveled in meters and "x" is the amount of time it takes in seconds. (negative times represent 1 or 2 minutes ago)

$$Mia \quad y = 2x + 5$$

Peeta $y = (x+1)^2$

Х	У
-2	
-1	
0	
1	
2	
3	

a) Who is ahead at 2 seconds?

- b) Who reaches 20 meters first?
- c) Who is traveling at a constant rate of change? Explain how you know this.
- d) If the race is only 8 seconds, who wins and why?

